欢迎访问 生活随笔!

尊龙凯时首页

当前位置: 尊龙凯时首页 > 人工智能 > 目标检测 >内容正文

目标检测

深度学习和目标检测系列教程 8-尊龙凯时首页

发布时间:2024/10/8 目标检测 0 豆豆
尊龙凯时首页 收集整理的这篇文章主要介绍了 深度学习和目标检测系列教程 8-300:目标检测常见的标注工具labelimg和将xml文件提取图像信息 小编觉得挺不错的,现在分享给大家,帮大家做个参考.

@author:runsen

图像标注主要用于创建数据集进行图片的标注。本篇博客将推荐一款非常实用的图片标注工具labelimg,重点介绍其安装使用过程。如果想简单点,请直接下载打包版(下载地址见结尾),无需编译,直接打开即可!

感谢原作者对github的贡献,博主发现软件已经更新,可以关注最新版本。这个工具是一个用 python 和 qt 编写的完整的图形界面。最有意思的是,它的标注信息可以直接转换成xml文件,这和pascal voc和imagenet使用的xml是一样的。

附注。作者在5月份更新了代码,现在最新版本号是1.3.0,博主亲测,源码在windows 10和ubuntu 16.04上正常运行。

具体的安装查看github教程:https://github.com/wkentaro/labelme/#installation

在原作者的github下载源码:https://github.com/tzutalin/labelimg
。解压名为labelimg-master的文件夹,进入当前目录的命令行窗口,输入如下语句依次打开软件。

python labelimg.py

具体使用

  • 修改默认的xml文件保存位置,使用快捷键“ctrl r”,更改为自定义位置,这里的路径一定不能包含中文,否则不会保存。

  • 使用notepad 打开源文件夹中的data/predefined_classes.txt,修改默认分类,如person、car、motorcycle这三个分类。

  • “打开目录”打开图片文件夹,选择第一张图片开始标注,用“创建矩形框”或“ctrl n”启动框,点击结束框,双击选择类别。完成一张图片点击“保存”保存后,xml文件已经保存到本地了。单击“下一张图片”转到下一张图片。

  • 贴标过程可以随时返回修改,保存的文件会覆盖上一个。

  • 完成注解后,打开xml文件,发现和pascal voc格式一样。

将xml文件提取图像信息

下面列举如何将xml文件提取图像信息,图片保存到image文件夹,xml保存标注内容。图片和标注的文件名字一样的。


下面是images图片中的一个。

下面是对应的xml文件。

trainapple_30.jpgc:\tensorflow1\models\research\object_detection\images\train\apple_30.jpgunknown80080030

将xml文件提取图像信息,主要使用xml和opencv,基于torch提取,代码比较凌乱。

import os import numpy as np import cv2 import torch import matplotlib.patches as patches import albumentations as a from albumentations.pytorch.transforms import totensorv2 from matplotlib import pyplot as plt from torch.utils.data import dataset from xml.etree import elementtree as et from torchvision import transforms as torchtrans# defining the files directory and testing directory train_image_dir = 'train/train/image' train_xml_dir = 'train/train/xml' # test_image_dir = 'test/test/image' # test_xml_dir = 'test/test/xml'class fruitimagesdataset(dataset):def __init__(self, image_dir, xml_dir, width, height, transforms=none):self.transforms = transformsself.image_dir = image_dirself.xml_dir = xml_dirself.height = heightself.width = width# sorting the images for consistency# to get images, the extension of the filename is checked to be jpgself.imgs = [image for image in os.listdir(self.image_dir)if image[-4:] == '.jpg']self.xmls = [xml for xml in os.listdir(self.xml_dir)if xml[-4:] == '.xml']# classes: 0 index is reserved for backgroundself.classes = ['apple', 'banana', 'orange']def __getitem__(self, idx):img_name = self.imgs[idx]image_path = os.path.join(self.image_dir, img_name)# reading the images and converting them to correct size and colorimg = cv2.imread(image_path)img_rgb = cv2.cvtcolor(img, cv2.color_bgr2rgb).astype(np.float32)img_res = cv2.resize(img_rgb, (self.width, self.height), cv2.inter_area)# diving by 255img_res /= 255.0# annotation fileannot_filename = img_name[:-4] '.xml'annot_file_path = os.path.join(self.xml_dir, annot_filename)boxes = []labels = []tree = et.parse(annot_file_path)root = tree.getroot()# cv2 image gives size as height x widthwt = img.shape[1]ht = img.shape[0]# box coordinates for xml files are extracted and corrected for image size givenfor member in root.findall('object'):labels.append(self.classes.index(member.find('name').text))# bounding boxxmin = int(member.find('bndbox').find('xmin').text)xmax = int(member.find('bndbox').find('xmax').text)ymin = int(member.find('bndbox').find('ymin').text)ymax = int(member.find('bndbox').find('ymax').text)xmin_corr = (xmin / wt) * self.widthxmax_corr = (xmax / wt) * self.widthymin_corr = (ymin / ht) * self.heightymax_corr = (ymax / ht) * self.heightboxes.append([xmin_corr, ymin_corr, xmax_corr, ymax_corr])# convert boxes into a torch.tensorboxes = torch.as_tensor(boxes, dtype=torch.float32)# getting the areas of the boxesarea = (boxes[:, 3] - boxes[:, 1]) * (boxes[:, 2] - boxes[:, 0])# suppose all instances are not crowdiscrowd = torch.zeros((boxes.shape[0],), dtype=torch.int64)labels = torch.as_tensor(labels, dtype=torch.int64)target = {}target["boxes"] = boxestarget["labels"] = labelstarget["area"] = areatarget["iscrowd"] = iscrowd# image_idimage_id = torch.tensor([idx])target["image_id"] = image_idif self.transforms:sample = self.transforms(image=img_res,bboxes=target['boxes'],labels=labels)img_res = sample['image']target['boxes'] = torch.tensor(sample['bboxes'])return img_res, targetdef __len__(self):return len(self.imgs)# function to convert a torchtensor back to pil image def torch_to_pil(img):return torchtrans.topilimage()(img).convert('rgb')def plot_img_bbox(img, target):# plot the image and bboxesfig, a = plt.subplots(1, 1)fig.set_size_inches(5, 5)a.imshow(img)for box in (target['boxes']):x, y, width, height = box[0], box[1], box[2] - box[0], box[3] - box[1]rect = patches.rectangle((x, y),width, height,linewidth=2,edgecolor='r',facecolor='none')# draw the bounding box on top of the imagea.add_patch(rect)plt.show()def get_transform(train):if train:return a.compose([a.horizontalflip(0.5),# totensorv2 converts image to pytorch tensor without div by 255totensorv2(p=1.0)], bbox_params={'format': 'pascal_voc', 'label_fields': ['labels']})else:return a.compose([totensorv2(p=1.0)], bbox_params={'format': 'pascal_voc', 'label_fields': ['labels']})dataset = fruitimagesdataset(train_image_dir,train_xml_dir, 480, 480, transforms= get_transform(train=true))print(len(dataset)) # getting the image and target for a test index. feel free to change the index. img, target = dataset[29] print(img.shape, '\n', target) plot_img_bbox(torch_to_pil(img), target)

输出如下:

torch.size([3, 480, 480]) {'boxes': tensor([[130.8000, 97.8000, 327.6000, 292.2000],[159.0000, 268.8000, 349.8000, 427.8000],[ 0.0000, 282.0000, 118.2000, 429.6000],[ 43.8000, 107.4000, 199.2000, 280.2000],[295.2000, 37.8000, 479.4000, 248.4000]]), 'labels': tensor([0, 0, 0, 0, 0]), 'area': tensor([38257.9258, 30337.2012, 17446.3223, 26853.1270, 38792.5195]), 'iscrowd': tensor([0, 0, 0, 0, 0]), 'image_id': tensor([29])}

下载地址

链接:https://pan.baidu.com/s/1qzdgeythyald2xhtjqz-yw
提取码:srjn

总结

以上是尊龙凯时首页为你收集整理的深度学习和目标检测系列教程 8-300:目标检测常见的标注工具labelimg和将xml文件提取图像信息的全部内容,希望文章能够帮你解决所遇到的问题。

如果觉得尊龙凯时首页网站内容还不错,欢迎将尊龙凯时首页推荐给好友。

  • 上一篇:
  • 下一篇:
网站地图