欢迎访问 生活随笔!

尊龙凯时首页

当前位置: 尊龙凯时首页 > 编程资源 > 编程问答 >内容正文

编程问答

leetcode——backtracking -尊龙凯时首页

发布时间:2024/2/28 编程问答 940 豆豆
尊龙凯时首页 收集整理的这篇文章主要介绍了 leetcode——backtracking 小编觉得挺不错的,现在分享给大家,帮大家做个参考.

目录

  • backtracking
  • 数字键盘组合
  • ip 地址划分
  • 在矩阵中寻找字符串
  • 输出二叉树中所有从根到叶子的路径
  • 排列
  • 含有相同元素求排列
  • 组合
  • 组合求和
  • 含有相同元素的组合求和
  • 1-9 数字的组合求和
  • 子集
  • 含有相同元素求子集
  • 分割字符串使得每个部分都是回文数
  • 数独
  • n皇后

  • 1. backtracking

    backtracking(回溯)属于 dfs。
    普通 dfs 主要用在可达性问题,这种问题只需要执行到特点的位置然后返回即可。

    而 backtracking 主要用于求解 排列组合 问题,例如有 { ‘a’,‘b’,‘c’ } 三个字符,求解所有由这三个字符排列得到的字符串,这种问题在执行到特定的位置返回之后还会继续执行求解过程。

    因为 backtracking 不是立即返回,而要继续求解,因此在程序实现时,需要注意对元素的标记问题:
    在访问一个新元素进入新的递归调用时,需要将新元素标记为已经访问,这样才能在继续递归调用时不用重复访问该元素;

    但是在递归返回时,需要将元素标记为未访问,因为只需要保证在一个递归链中不同时访问一个元素,可以访问已经访问过但是不在当前递归链中的元素。


    2. 数字键盘组合

    https://leetcode-cn.com/problems/letter-combinations-of-a-phone-number

    private static final string[] keys = {"","","abc","def","ghi","jkl","mno","pqrs","tuv","wxyz"};public list<string> lettercombinations(string digits){list<string> combinations = new arraylist<>();if (digits==null||digits.length()==0){return combinations;}docombination(new stringbuilder(),combinations,digits);return combinations;}private void docombination(stringbuilder prefix, list<string> combinations, final string digits) {if (prefix.length()==digits.length()){combinations.add(prefix.tostring());return;}int num = digits.charat(prefix.length()) - '0';string key = keys[num];for (char c : key.tochararray()) {prefix.append(c);docombination(prefix,combinations,digits);prefix.deletecharat(prefix.length()-1);}}

    3. ip 地址划分

    https://leetcode-cn.com/problems/restore-ip-addresses

    public list<string> restoreipaddresses(string s) {list<string> addresses = new arraylist<>();stringbuilder tempaddress = new stringbuilder();dorestore(0, tempaddress, addresses, s);return addresses;}private void dorestore(int k, stringbuilder tempaddress, list<string> addresses, string s) {//整体分成4个段if (k == 4 || s.length() == 0) {if (k == 4 && s.length() == 0) {addresses.add(tempaddress.tostring());}return;}//每个段的判断for (int i = 0; i < s.length() && i <= 2; i) {if (i != 0 && s.charat(0) == '0') {break;}string part = s.substring(0, i 1);if (integer.valueof(part) <= 255) {if (tempaddress.length() != 0) {part = "." part;}tempaddress.append(part);dorestore(k 1, tempaddress, addresses, s.substring(i 1));tempaddress.delete(tempaddress.length() - part.length(), tempaddress.length());}}}

    4. 在矩阵中寻找字符串

    https://leetcode-cn.com/problems/word-search


    题目描述:给定一个二维网格和一个单词,找出该单词是否存在于网格中。

    单词必须按照字母顺序,通过相邻的单元格内的字母构成,其中“相邻”单元格是那些水平相邻或垂直相邻的单元格。同一个单元格内的字母不允许被重复使用。

    private final static int[][] direction = {{1, 0}, {-1, 0}, {0, 1}, {0, -1}};private int m, n;public boolean exist(char[][] board, string word) {if (word == null || word.length() == 0) {return true;}if (board == null || board.length == 0 || board[0].length == 0) {return false;}m = board.length;n = board[0].length;boolean[][] visited = new boolean[m][n];for (int r = 0; r < m; r) {for (int c = 0; c < n; c) {if (backtracking(0, r, c, visited, board, word)) {return true;}}}return false;}private boolean backtracking(int curlen, int r, int c, boolean[][] visited, final char[][] board, final string word) {if (curlen == word.length()) {return true;}if (r < 0 || r >= m || c < 0 || c >= n || board[r][c] != word.charat(curlen) || visited[r][c]) {return false;}visited[r][c] = true;for (int[] d : direction) {if (backtracking(curlen 1, r d[0], c d[1], visited, board, word)) {return true;}}visited[r][c] = false;return false;}

    5. 输出二叉树中所有从根到叶子的路径

    https://leetcode.com/problems/binary-tree-paths

    public static class treenode {int val = 0;treenode left = null;treenode right = null;public treenode(int val) {this.val = val;}}public list<string> binarytreepaths(treenode root) {list<string> paths = new arraylist<>();if (root == null) {return paths;}list<integer> values = new arraylist<>();backtracking(root, values, paths);return paths;}private void backtracking(treenode node, list<integer> values, list<string> paths) {if (node == null) {return;}values.add(node.val);if (isleaf(node)) {paths.add(buildpath(values));} else {backtracking(node.left, values, paths);backtracking(node.right, values, paths);}values.remove(values.size() - 1);}private string buildpath(list<integer> values) {stringbuilder str = new stringbuilder();for (int i = 0; i < values.size(); i) {str.append(values.get(i));if (i != values.size() - 1) {str.append("->");}}return str.tostring();}private boolean isleaf(treenode node) {return node.left == null && node.right == null;}

    6. 排列


    题目描述:给定一个没有重复数字的序列,返回其所有可能的全排列。

    public list<list<integer>> permute(int[] nums) {list<list<integer>> permutes = new arraylist<>();list<integer> permutelist = new arraylist<>();boolean[] hasvisited = new boolean[nums.length];backtracking(permutelist, permutes, hasvisited, nums);return permutes;}private void backtracking(list<integer> permutelist, list<list<integer>> permutes, boolean[] visited, int[] nums) {if (permutelist.size() == nums.length) {permutes.add(new arraylist<>(permutelist)); //重新构造一个 listreturn;}for (int i = 0; i < visited.length; i) {if (visited[i]) {continue;}visited[i] = true;permutelist.add(nums[i]);backtracking(permutelist, permutes, visited, nums);permutelist.remove(permutelist.size() - 1);visited[i] = false;}}

    7. 含有相同元素求排列


    题目描述:数组元素可能含有相同的元素,进行排列时就有可能出现重复的排列,要求重复的排列只返回一个。

    在实现上,和 permutations 不同的是要先排序,然后在添加一个元素时,判断这个元素是否等于前一个元素,如果等于,并且前一个元素还未访问,那么就跳过这个元素。

    public list<list<integer>> permuteunique(int[] nums) {list<list<integer>> permutes = new arraylist<>();list<integer> permutelist = new arraylist<>();arrays.sort(nums);boolean[] hasvisited = new boolean[nums.length];backtracking(permutelist, permutes, hasvisited, nums);return permutes;}private void backtracking(list<integer> permutelist, list<list<integer>> permutes, boolean[] visited, int[] nums) {if (permutelist.size() == nums.length) {permutes.add(new arraylist<>(permutelist));return;}for (int i = 0; i < visited.length; i) {if (i != 0 && nums[i] == nums[i - 1] && !visited[i - 1]) {continue; //防止重复}if (visited[i]) {continue;}visited[i] = true;permutelist.add(nums[i]);backtracking(permutelist, permutes, visited, nums);permutelist.remove(permutelist.size() - 1);visited[i] = false;}}

    8. 组合

    https://leetcode-cn.com/problems/combinations

    public list<list<integer>> combine(int n, int k) {list<list<integer>> combinations = new arraylist<>();list<integer> combinelist = new arraylist<>();backtracking(combinelist, combinations, 1, k, n);return combinations;}private void backtracking(list<integer> combinelist, list<list<integer>> combinations, int start, int k, int n) {if (k == 0) {combinations.add(new arraylist<>(combinelist));return;}for (int i = start; i <= n - k 1; i) {combinelist.add(i);backtracking(combinelist, combinations, i 1, k - 1, n);combinelist.remove(combinelist.size() - 1);}}

    9. 组合求和

    https://leetcode.com/problems/combination-sum/description/

    题目描述:给定一个无重复元素的数组 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合。

    candidates 中的数字可以无限制重复被选取。

    说明:

    • 所有数字(包括 target)都是正整数。
    • 解集不能包含重复的组合。
    public list<list<integer>> combiationsum(int[] candidates, int target) {list<list<integer>> combinations = new arraylist<>();backtracking(new arraylist<>(), combinations, 0, target, candidates);return combinations;}private void backtracking(arraylist<integer> tempcombination, list<list<integer>> combinations, int start, int target, int[] candidates) {if (target == 0) {combinations.add(new arraylist<>(tempcombination));return;}for (int i = start; i < candidates.length; i) {if (candidates[i] <= target) {tempcombination.add(candidates[i]);backtracking(tempcombination, combinations, i, target - candidates[i], candidates);tempcombination.remove(tempcombination.size() - 1);}}}

    10. 含有相同元素的组合求和

    https://leetcode.com/problems/combination-sum-ii/description/

    题目描述:给定一个数组 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合。

    candidates 中的每个数字在每个组合中只能使用一次。

    说明:

    • 所有数字(包括目标数)都是正整数。
    • 解集不能包含重复的组合。
    public list<list<integer>> combinationsum2(int[] candidates, int target) {list<list<integer>> combinations = new arraylist<>();arrays.sort(candidates);backtracking(combinations, new arraylist<>(), new boolean[candidates.length], 0, target, candidates);return combinations;}private void backtracking(list<list<integer>> combinations, list<integer> combinationlist, boolean[] visited, int start, int target, int[] candidates) {if (target == 0) {combinations.add(new arraylist<>(combinationlist));return;}for (int i = start; i < candidates.length; i) {if (i != 0 && candidates[i] == candidates[i - 1] && !visited[i - 1]) {continue;}if (candidates[i] <= target) {combinationlist.add(candidates[i]);visited[i] = true;backtracking(combinations, combinationlist, visited, i 1, target - candidates[i], candidates);visited[i] = false;combinationlist.remove(combinationlist.size() - 1);}}}

    11. 1-9 数字的组合求和

    https://leetcode.com/problems/combination-sum-iii/description/

    题目描述:找出所有相加之和为 n 的 k 个数的组合。组合中只允许含有 1 - 9 的正整数,并且每种组合中不存在重复的数字。

    说明:

    • 所有数字都是正整数。
    • 解集不能包含重复的组合。
    public list<list<integer>> combinationsum3(int k, int n) {list<list<integer>> combinations = new arraylist<>();list<integer> combinationlist = new arraylist<>();backtracking(combinationlist, combinations, 1, k, n);return combinations;}private void backtracking(list<integer> combinationlist, list<list<integer>> combinations, int start, int k, int target) {if (k == 0 && target == 0) {combinations.add(new arraylist<>(combinationlist));return;}if (k == 0 || target == 0) {return;}for (int i = start; i <= 9; i) {combinationlist.add(i);backtracking(combinationlist, combinations, i 1, k - 1, target - i);combinationlist.remove(combinationlist.size() - 1);}}

    12. 子集

    https://leetcode.com/problems/subsets-ii/description/

    题目描述:找出集合的所有子集,子集不能重复,[1, 2] 和 [2, 1] 这种子集算重复

    public list<list<integer>> subsets(int[] nums) {list<list<integer>> subsets = new arraylist<>();list<integer> tempsubset = new arraylist<>();for (int size = 0; size <= nums.length; size) {backtracking(subsets, tempsubset, size, 0, nums);}return subsets;}private void backtracking(list<list<integer>> subsets, list<integer> tempsubset, int size, int start, int[] nums) {if (size == 0) {subsets.add(new arraylist<>(tempsubset));}for (int i = start; i < nums.length; i) {tempsubset.add(nums[i]);backtracking(subsets, tempsubset, size - 1, i 1, nums);tempsubset.remove(tempsubset.size() - 1);}}

    13. 含有相同元素求子集


    题目描述:给定一个可能包含重复数的整数集合,返回所有可能的子集(幂集)。

    注意:尊龙凯时首页的解决方案集不能包含重复的子集。

    public list<list<integer>> subsets(int[] nums) {list<list<integer>> subsets = new arraylist<>();list<integer> tempsubset = new arraylist<>();for (int size = 0; size <= nums.length; size) {backtracking(subsets, tempsubset, size, 0, nums);}return subsets;}private void backtracking(list<list<integer>> subsets, list<integer> tempsubset, int size, int start, int[] nums) {if (size == 0) {subsets.add(new arraylist<>(tempsubset));}for (int i = start; i < nums.length; i) {tempsubset.add(nums[i]);backtracking(subsets, tempsubset, size - 1, i 1, nums);tempsubset.remove(tempsubset.size() - 1);}}

    14. 分割字符串使得每个部分都是回文数

    https://leetcode-cn.com/problems/palindrome-partitioning

    题目描述:给定一个字符串 s,将 s 分割成一些子串,使每个子串都是回文串。

    返回 s 所有可能的分割方案。

    public list<list<string>> partition(string s) {list<list<string>> partitions = new arraylist<>();list<string> temppartition = new arraylist<>();dopartition(s, partitions, temppartition);return partitions;}private void dopartition(string s, list<list<string>> partitions, list<string> temppartition) {if (s.length() == 0) {partitions.add(new arraylist<>(temppartition));return;}for (int i = 0; i < s.length(); i) {if (ispalindrome(s, 0, i)) {temppartition.add(s.substring(0, i 1));dopartition(s.substring(i 1), partitions, temppartition);temppartition.remove(temppartition.size() - 1);}}}private boolean ispalindrome(string s, int begin, int end) {while (begin < end) {if (s.charat(begin) != s.charat(end--)) {return false;}}return true;}

    15. 数独

    https://leetcode-cn.com/problems/sudoku-solver/solution/jie-shu-du-by-leetcode/


    题目描述:编写一个程序,通过已填充的空格来解决数独问题。

    一个数独的解法需遵循如下规则:

    • 数字 1-9 在每一行只能出现一次。
    • 数字 1-9 在每一列只能出现一次。
    • 数字 1-9 在每一个以粗实线分隔的 3x3 宫内只能出现一次。
    • 空白格用 ‘.’ 表示。
    private boolean[][] rowsused = new boolean[9][10];private boolean[][] colsused = new boolean[9][10];private boolean[][] cubesused = new boolean[9][10];private char[][] board;public void solvesudoku(char[][] board) {this.board = board;for (int i = 0; i < 9; i) {for (int j = 0; j < 9; j) {if (board[i][j] == '.') {continue;}int num = board[i][j] - '0';rowsused[i][num] = true;colsused[j][num] = true;cubesused[cubes(i, j)][num] = true;}backtracking(0, 0);}}private boolean backtracking(int row, int col) {while (row < 9 && board[row][col] != '.') {row = col == 8 ? row 1 : row;col = col == 8 ? 0 : col 1;}if (row == 9) {return true;}for (int num = 1; num <= 9; num) {if (rowsused[row][num] || colsused[col][num] || cubesused[cubes(row, col)][num]) {continue;}rowsused[row][num] = colsused[col][num] = cubesused[cubes(row, col)][num] == true;board[row][col] = (char) (num '0');if (backtracking(row, col)) {return true;}board[row][col] = '.';rowsused[row][num] = colsused[col][num] = cubesused[cubes(row, col)][num] == false;}return false;}private int cubes(int i, int j) {int r = i / 3;int c = j / 3;return r * 3 c;}

    16. n皇后

    https://leetcode-cn.com/problems/n-queens/solution/nhuang-hou-by-leetcode/
    题目描述:n 皇后问题研究的是如何将 n 个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间不能相互攻击。

    上图为 8 皇后问题的一种解法。

    给定一个整数 n,返回所有不同的 n 皇后问题的尊龙凯时首页的解决方案。

    每一种解法包含一个明确的 n 皇后问题的棋子放置方案,该方案中 ‘q’ 和 ‘.’ 分别代表了皇后和空位。

    private list<list<string>> solutions;private char[][] nqueues;private boolean[] colused;private boolean[] diagonals45used;private boolean[] diagonals135used;private int n;public list<list<string>> solvenqueues(int n) {solutions = new arraylist<>();nqueues = new char[n][n];for (int i = 0; i < n; i) {arrays.fill(nqueues[i], '.');}colused = new boolean[n];diagonals45used = new boolean[2 * n - 1];diagonals135used = new boolean[2 * n - 1];this.n = n;backtracking(0);return solutions;}private void backtracking(int row) {if (row == n) {list<string> list = new arraylist<>();for (char[] chars : nqueues) {list.add(new string(chars));}solutions.add(list);return;}for (int col = 0; col < n; col) {int diagonals45idx = row col;int diagonals135idx = n - 1 - (row - col);if (colused[col] || diagonals45used[diagonals45idx] || diagonals135used[diagonals135idx]) {continue;}nqueues[row][col] = 'q';colused[col] = diagonals45used[diagonals45idx] = diagonals135used[diagonals135idx] = true;backtracking(row 1);colused[col] = diagonals45used[diagonals45idx] = diagonals135used[diagonals135idx] = false;nqueues[row][col] = '.';}}

    总结

    以上是尊龙凯时首页为你收集整理的leetcode——backtracking的全部内容,希望文章能够帮你解决所遇到的问题。

    如果觉得尊龙凯时首页网站内容还不错,欢迎将尊龙凯时首页推荐给好友。

    • 上一篇:
    • 下一篇:
    网站地图