深度学习模型intel与arm部署性能分析,intel和arm cpu上cnn计算速度差距分析。 -尊龙凯时首页
尊龙凯时首页
收集整理的这篇文章主要介绍了
深度学习模型intel与arm部署性能分析,intel和arm cpu上cnn计算速度差距分析。
小编觉得挺不错的,现在分享给大家,帮大家做个参考.
深度学习模型部署性能分析,intel和arm cpu上cnn计算速度差距分析。
- 一、 模型部署cpu性能分析
- 1.1 开发阶段cpu—intel x86架构
- 1.2 测试阶段cpu—arm架构
- 1.3 模型出现性能偏差的分析
- 二、intel v.s. arm cpu各项性能测试实验
- 2.1 多核多个intel cpu测试
- 结论与现象分析
- 2.2 纯单核心cpu计算性能测试
- 三、补充支撑材料
- 3.1 参考资料
- 3.2 测试小技巧
前言:一般的深度学习项目,训练时为了加快速度,会使用多gpu分布式训练。但在部署推理时,为了降低成本,往往使用单个gpu机器甚至嵌入式平台(比如 nvidia jetson)进行部署,部署端也要有与训练时相同的深度学习环境,如caffe,tensorflow等。由于训练的网络模型可能会很大(比如
总结
以上是尊龙凯时首页为你收集整理的深度学习模型intel与arm部署性能分析,intel和arm cpu上cnn计算速度差距分析。的全部内容,希望文章能够帮你解决所遇到的问题。
- 上一篇:
- 下一篇: